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ABSTRACT 

The positive-stranded coronavirus genome, at 32 kilobases in length, is the largest 

known viral RNA genome, and internal cis-signaling elements directing its replication 

have been described only within the last ten years. The bovine coronavirus genome 

encodes 26 proteins in the region between the 5 '-terminal 210-nt untranslated region and 

the 3' -terminal 298-nt untranslated region. Here, genes for 5 of the 26 proteins were 

cloned into bacterial expression plasmids for the long-term goals of characterizing 

enzymatic and RNA binding properties. These genes encode enzymes postulated to 

interact directly with the cis-acting RNA elements and carry out RNA synthesis, namely, 

the RNA-dependent RNA polymerase, the helicase, the exonuclease, the endonuclease, 

and the 2'-O-methyltransferase. For a detailed analysis, bacterially-expressed BCoV 2'­

O-Methyltransferase was purified and (i) tested for enzymatic activity, which is 

presumably a 2' -O-methylation of 5 '-terminal cap structures, and (ii) tested for its 

binding to terminal genomic regions known to contain cis-acting replication elements. 

Methyltransferase activity was not found, suggesting the proper conditions were not met 

or the proper template was not used, or perhaps, as with many viral enzymes made from a 

polyprotein precursor, it does not function as a unit-length molecule. Using the 

electrophoretic mobility shift assay, the 2 '-O-Methyltransferase was found to bind cis­

acting stem-loop IV in the 5' untranslated region, but does not bind other cis-acting 

elements, including the region in gene 1 containing stem-loops V and VI or the 3 ' -

proximal cis-acting bulged stem-loop and pseudoknot. The results of this study suggest 

that the putative bovine coronavirus 2'-O-Methyltransferase uses stem-loop IV as a 

binding site to carry out methyltransferase function( s) yet to be discovered. 
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CHAPTER I 

LITERATURE REVIEW ON REPLICATION PROTEINS OF THE BOVINE 
CORONA VIRUS 

The Coronavirus Family 

The family Coronaviridae (9) is one of 17 families of animal RNA viruses, each 

distinguished by one or more unique feature in structure or replication strategy. The 

Coronaviridae belong to the order Nidovirales, to which two other families, the 

Arteriviridae and the Roniviridae, also belong (10). Coronaviruses are enveloped, single­

stranded, positive-sense RNA viruses possessing a genome of 28-32 kilobases in length, 

the largest RNA genome known for any RNA virus. Coronaviruses are divided into three 

groups named Groups 1, 2 and 3, based on antigenic differences. Genome sequence 

differences support this classification. There is continuing debate with regard to which 

group the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) belongs. Recent 

evidence suggests it most closely fits with Group 2 coronaviruses of which the bovine 

coronavirus (BCoV) is a member (Figure 1-1) (32). Long before the discovery of the 

SARS-CoV in the spring of 2003, much research had been done on the replication 

strategy of coronaviruses and on the pathogenesis of many important human and animal 

coronaviruses. These included the avian infectious bronchitis virus, the porcine 

transmissible gastroenteritis virus, the bovine coronavirus, the feline infectious peritonitis 

virus, the mouse hepatitis viruses and the human respiratory coronaviruses. The mouse 

hepatitis coronavirus has been especially intensely studied as a model for coronaviruses 

in animals and it was with this virus that many of the intriguing features of coronaviruses 

were first described. These include extremely high rates of recombination among viral 
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Nidovirales 

Arteriviridae Roniviridae 
Coronaviridae 

I 

C oro
j

av1rus T orovirus 

I I I 
Group 1 Group 2 Group 3 

• Transmissible • Mouse hepatitis • Avian 
gastroenteritis coronavirus (MHV) infectious 
{TGEV) • Bovine coronavirus bronchitis 

• Canine coronavirus (BCoV) virus (IBV) 

(CCoV) • Human respiratory • Turkey 
• Feline coronavirus coronavirus-OC43 enteric 

(FECoV) (HCoV-OC43) coronavirus 
• Human respiratory • Porcine {TCoV) 

coronavirus-229E hemagglutinating 
(HCoV-229E) encephalomyelitis 

• Porcine epidemic coronavirus (HEV) 

diarrhea virus • Rat coronavirus (RtCo V) 
(PEDV) • Human enteric 

coronavirus (HECo V) 
• Equine coronavirus 

(ECoV) 
• Puffinosis virus (PV) 
• Severe acute respiratory 

coronavirus (SARS-
CoV) 

Figure I-1. Taxonomy of coronaviruses. Coronaviruses are divided into three 
groups as depicted here. Representative members of each group are also shown. The 
placement of the SARS coronavirus is still under debate, with some investigators 
proposing it belongs to an entirely new group, Group 4 (32). 
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strains (approaching 10%) and long-term viral persistence in the host (in some cases the 

life of the mouse, over 700 days) that often accompanies a demyelinating encephalitis 

(18) (hence making this an experimental model for multiple sclerosis) (34). With the 

feline infectious peritonitis virus, immune-mediated disease was found (13). Since the 

discovery of the SARS-Co V, research on coronaviruses has intensified in part because of 

its severity as a human pathogen and the consequential need for new vaccines and 

therapeutic agents. Intensified research has also led to the discovery of SARS-Co V-like 

viruses in horseshoe bats in Southeast Asia. The identification of key steps in the 

coronavirus life cycle is now more important than ever as they represent potential target 

sites for drug design. Among the challenges is a detailed characterization of the enzymes 

involved in coronavirus genome replication. 

Coronavirus Replication Strategy 

The genome of the coronavirus, as with most positive-strand RNA viruses, upon 

entry into a cell acts as mRNA for synthesis of the proteins responsible for virus 

replication. In the coronavirus, the proteins with enzymatic function responsible for 

genome replication appear to all come from open reading frame ( ORF) 1, also called the 

replicase gene (Fig. I-2). (Although this is technically a polycistronic gene and the 

individual products of the gene are derived by proteolytic processing of the ORF 1 gene 

product, for ease of reference in this thesis, ORF 1 will be considered to be comprised of 

16 separate genes, each encoding a separate protein.) ORF 1 ab is translated through a -1 

ribosomal frameshifting event which occurs at the slippery sequence, UUUAAAC, 

present at the junction of ORFs 1 a and 1 b. From ORF 1 a comes two proteases, the minor 

3 
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A �JiJ... 32 4.9 4.8 12.7 E 
r------------�:------;:;O:;;".RFittti:""b ---,l,....ru;i t..__��-5' m7G-i ORFla L.f-'-*-1.._____,.s _____ � A,. 

I 
I 
I 
I 
I 
I 
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B 
I 

1 2 3 4 5 6 1 8 9 10 

S'm10-J2sI 65-1 - - ----··-----1 j I f l�l-l�L----------..t 
13 .14 

60 IIDJ 

nsp 1 nsp 3 
(1fil nsp2 - - . 

I 6S 

20 

...Q... nsp 
nsp 5 nsp 7 9 nsp 12 � 2'-0-MT 

I - 0 O"'I jnsp13� D 
• lll � o·'-------'1,..z...,., .•. ·�,.,:.,.-� onsp 16 

nsp nsp nsp nsp 
4 6 8 10 

Xend.oU r:isp 15 

Figure I-2. Schematic representation of the BCoV genome. A. The full-length 
BCoV genome. This depicts ORF 1 (the fused ORF la and ORF lb) also called the 
replicase gene in the 5' proximal two-thirds of the genome, and the structural protein 
genes in the 3' proximal one-third of the genome. B. A close-up representation of the 
replicase gene showing the positions of regions encoding the nonstructural proteins. 
These are made as a polyprotein that are proteolytically processed by viral proteases 
encoded within ORF la. (For ease of description in this thesis, the short regions 
encoding nsp 1-16 are called genes.) The numbers inside the boxes representing nsp 1, 
nsp 2, and nsp 8 refer to the molecular weight of the protein products. A very small 
protein of 14 amino acids exists at the 3' end of ORF la and is called nsp 11(7, 32). 
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protease, a papain-like protease (PLP-1 and PLP-2), and the mam protease, a 

picomavirus 3C-like serine protease (3CL), that together cleave the ORF la and lab 

polyproteins into the 16 nonstructural protein products (named nsp 1 through nsp 16). 

From ORF lb come five proteins (nsp 12 through nsp 16), all enzymes, predicted to play 

a direct role in RNA replication and transcription (i.e., the synthesis of sg mRNAs). 

These are identified by viral genomics analyses to be the RNA-dependent RNA 

polymerase (RdRP) (nsp 12), the helicase (Hel) (nsp 13), the 3' to 5' exonuclease (ExoN) 

(nsp 14), the poly(U)-specific endoribonuclease (EndoN) (nsp 15), and the S­

adenosylmethionine-dependent ribose 2 '-O-Methyltransferase (2 '-O-MT) ( nsp 16) 

(Figure 1-2) (32). These proteins are presumably used to replicate the viral genome 

(replication) and to make a 3 '-coterminal nested set of sub genomic mRNAs 

(transcription), processes which occur in the cytoplasm in as yet uncharacterized 

membrane-associated replication and transcription complexes. In coronaviruses ( as in 

arteriviruses, the only other family known to do it), the transcription process is uniquely 

discontinuous since a 5 '-leader sequence ( ranging from 65 to 93 nts in length in 

coronaviruses), encoded only at the 5'-terminus of the genome, gets placed onto the 5'­

end of each sub genomic mRNA. From these sub genomic mRNAs, only the 5 '-most open 

reading frame (ORF) is translated to give rise to viral structural proteins. The 

coronavirus structural proteins include the spike glycoprotein (S), the envelope protein 

(E), the membrane glycoprotein (M), and the nucleocapsid phosphoprotein (N). Various 

other proteins (2-5) of unknown function, often referred to as luxury or nonstructural 

proteins, are also made (4, 39). 

5 
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The Bovine Coronavirus (BCo V) Model System 

The molecular biology of bovine coronavirus replication was initially studied in 

our laboratory because BCo V was one of the few culturable group 2 coronaviruses at the 

time ( 197 6) that caused natural disease in the gastrointestinal tract. The aim at that time, 

as now, was to learn the details of virus replication in the hope of developing anti­

coronaviral chemotherapeutic agents. The molecular biology of BCoV was therefore 

studied in parallel with a few other key coronaviruses, primarily the mouse hepatitis 

coronavirus (MHV) and porcine transmissible gastroenteritis virus, and fundamental 

discoveries about coronavirus replication were made in all three viruses (9). The unique 

contributions made with BCo V were (i) a molecular description and characterization of 

the Hemagglutinin-Esterase structural glycoprotein, a protein phylogenetically related to 

the HE protein in group C influenza viruses, that appears to contribute to the 

neurotropism of some group 2 coronaviruses and that is not made in most strains of MHV 

or in any virus in groups 1 and 3 (21, 24). (ii) confirmation of the presence of 

subgenomic mRNA minus strands (that contributed in a major way to the current model 

of coronavirus transcription) (20). (iii) the discovery and characterization of a simple 

defective interfering RNA (the simplest of all coronavirus DI RNAs) that is comprised of 

the two ends of the viral genome (the 5' 498 nts and the 3' 1635 nts) and that replicates in 

the presence of the parent helper virus (5). This 2.2 kilobase DI RNA has been a major 

tool in the discovery and characterization of the cis-acting elements of coronavirus 

genome replication (6, 30, 31, 36, 37). 

6 
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Cis-Acting RNA Elements for Genome Replication in BCoV 

Seven cis-acting RNA replication elements have been described to date for the 2.2 

kilobase BCoV DI RNA, a minigenome, that presumably are also required for the 

replication of the full-length viral genome (Figure 1-3). (i) The 5 '-terminal 84 nts in the 

BCoV genome which contains two stem-loops, named stem-loops I and II, is a sequence 

required for minigenome replication (6). However, since these stem-loops are not highly 

conserved in coronaviruses, even among the group 2 coronaviruses, it is not likely that 

the higher-order structures, per se, are required for the cis-acting function. (ii) The 5 ' -

proximal stem-loop III is a highly-conserved higher-order structure in all coronaviruses, 

based on mfold predictions by the Zuker algorithm ( 40), that is required as a higher-order 

structure in both the positive and negative strands for minigenome replication (30). (iii) 

The 5'-proximal stem-loop IV is a highly-conserved higher-order structure in group 2 

coronaviruses that has a homolog in all coronaviruses and is a required higher-order 

structure in the positive strand for minigenome replication (31 ). (iv) The 5 '-proximal 

stem-loop VI is a higher-order structure mapping within the nsp 1 coding region that is 

conserved in group 2 coronaviruses and is required as a higher-order structure m 

minigenome replication (Brown, Nixon, Senanayake and Brian, manuscript m 

preparation). (v) The 3 '-proximal bulged stem-loop and adjacent pseudoknot that map 

just downstream of the N stop codon within the 3' untranslated region function together 

as a cis-acting element in minigenome replication (36). This element is highly-conserved 

in group 2 coronaviruses and has been shown to function as a cis-acting element in the 

MHV minigenome and genome as well (17). (vi) The 3 '-proximal octameric sequence 

GGAAGAGC found in all coronaviruses sequenced to date is part of a predicted stem-

7 
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Figure 1-3. Schematic representation of the seven cis-acting replication elements 
in the 5' and 3' termini of the BCoV genome and in the nsp 1 coding region. A. BCoV 5' 
UTR and part of the nsp 1 coding region depicting (i) stem-loops I and II (which together 
function as a cis-acting element), (ii) stem-loop III, (iii) stem-loop IV, and (iv) stem-loop 
VI. B. BCoV 3' UTR depicting (v) 5'-proximal bulged stem loop and adjacent 
pseudoknot (which together function as a cis-acting element), (vi) 3 '-proximal bulged 
stem-loop with the internal GGAAGAGC octameric sequence, and (vi) poly (A) tail. 
Numbers represent nucleotide positions from the respective termini. 
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loop in coronaviruses in groups 1, 2 and 3 and is required as a cis-acting sequence in the 

replication of the BCo V minigenome (Wu and Brian, unpublished). (vii) The 3 ' -

terminal poly(A) tail is a cis-acting element in minigenome replication (33). 

It is presumed that the cis-acting RNA elements function through interactions 

with viral and, or, cellular proteins. To date, however, only a few of these interactions 

have been identified, and, where identified, it is not yet been established whether the 

RNA-protein interactions are required for the cis-acting function. In relation to the seven 

identified cis-acting elements in the BCo V ( and closely-related MHV) system, the 

following can be said. (i) It has been shown in MHV that the N protein binds the 

UCUAAAC leader associated transcription-regulating core sequence within the first 84-

nt cis-acting element with high affinity (K0
= 14µM) (27) and this will probably hold true 

as well for BCoV. (ii) Regarding stem-loop III in BCoV, it has been shown that the 

viral N protein and unidentified viral proteins of 22 and 38 kDa bind the stem-loop in the 

positive strand and that seven cellular proteins in the molecular weight range of 76 and 

25 kDa of unknown identity bind stem-loop III in the negative strand (Raman and Brian, 

submitted). (iii) Regarding stem-loop IV in BCoV, it has been shown that eight cellular 

proteins in the molecular weight range of 78 to 25 kDa of unknown identity bind the 

stem-loop in the positive strand in a higher-order-dependent manner (31 ). (iv) 

Regarding stem-loop VI in the nsp 1 coding region ofBCoV, it has been shown that p28, 

the protein product of the nsp 1 coding region, binds to some region within this coding 

region but it is not known whether it binds to stem-loop VI per se (Kortney Gustin, 

unpublished data). (v) Regarding the bulged stem-loop and the pseudoknot in the 3' 

untranslated region of MHV and BCo V, no protein has yet been shown to bind this 
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region (Agnieszka Dziduszko, unpublished data). . (vi) Regarding the GGAAGAGC 

octameric region and the associated stem-loop, no protein has yet been shown to bind this 

region except for the exciting new observation described below that the bovine 

methyltransferase binds at or near the GGAAGAGC octamer (Agnieszka Dziduszko and 

Tara Tucker, unpublished data). (vii) Regarding the 3 '-terminal cis-acting poly(A) tail 

in MHV and BCoV, it has been shown that the poly(A)-binding protein binds this region 

(33). 

It is our hypothesis that the cis-acting elements for bovine coronavirus genome 

replication are binding targets for the enzymes used in genome replication. In that light, I 

have, along with testing the enzyme activity of the BCoV 2'-O-MT (described below), 

investigated its potential binding to the 5' untranslated region as a whole, and stem-loop 

IV in particular. In collaboration with Kortney Gustin, its potential binding to the nsp 1 

ORF and in collaboration with Agnieszka Dziduszko, its potential binding to the 3 ' -

proximal bulged stem-loop and adjacent pseudoknot, and the octamer-containing stem­

loop, were also tested. 

BCo V Replication Enzymes 

Putative functions have been assigned to the cleavage products of ORF 1 b based 

on sequence homologies and motif similarities of known RdRP, Hel, ExoN, EndoN, and 

MT enzymes (7, 32). Since these proteins are only translated when the ribosomal 

frameshifting event occurs ( about 20%-30% of the time in vitro), it is suggested that they 

are needed in much less abundance than the other proteins encoded by the genome (39). 

The replicase proteins are thought to assemble into a replication complex that is 
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associated with cellular membranes. Through the action of this complex, the viral 

genome is replicated and the 3'-coterminal nested set of subgenomic mRNAs is made. 

While it is presumed that the RdRP polymerizes nucleotides into RNA, the exact 

functions of the Hel, ExoN, EndoN, and MT are not known. It is speculated that the 

ExoN may be involved in RNA proofreading and repair functions but these would be 

novel properties for an RNA virus; however, because of their large genomes, it's possible 

they may have acquired this ability (39). The MT may be involved in 5' capping, a 

process thought to increase mRNA stability and aid in ribosomal binding. The BCo V 

helicase protein contains a putative N-terminal zinc-binding domain, a domain required 

for helicase function. RNA helicases unwind double-stranded RNA through the 

hydrolysis of nucleoside triphosphates (39). The helicase may also participate in the 5' 

capping reaction of viral mRNAs since it possesses a predicted 5 '-triphosphatase activity 

(23). 

Rationale for a Focus on the Enzymatic and RNA Binding Properties of BCoV 2'-0-

Methyltransferase 

The 2' -O-methyltransferase has been implicated in the capping reaction of the 5' 

end of viral mRNAs, as was shown for an analogous flavivirus enzyme, the Dengue virus 

NS5 protein (8). A conserved motif of amino acid residues present in the Dengue virus 

2'-O-MT (NS5MTase0v), K61-D146-K181-E217, is also present in the BCoV 2'-O-MT, 

K46-D130-Kl 70-E203. Additionally, an analogous motif is also present in another 2'-O­

MT, VP39 in the double-stranded DNA vaccinia virus, and is identified as K41-Dl38-
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Kl 75-E207. These similarities led us to investigate the properties of the BCoV enzyme 

further. 

The binding pattern of the MT is of interest since it may suggest its site of action 

and perhaps also other function(s). To study the binding capacity of the BCoV MT, the 

electrophoretic mobility shift assay (EMSA) was used. By using RNA transcripts 

containing the individual cis-acting elements from the 5' and 3' termini as radiolabeled 

probes, the binding sites for the MT were sought. 

The enzymatic function and binding capacity of BCo V MT have not yet been 

demonstrated. We were therefore led to address the following questions. With regard to 

enzymatic activity, will the MT transfer a methyl group from its donor, S -adenosyl-L­

methionine (SAM), to a 5 '-terminal RNA transcript produced in vitro? Will the MT bind 

a potential RNA target with enough affinity and specificity to produce a gel shift in an 

EMSA? What cis-acting replication elements are required for the binding of the MT to 

BCoV RNA? 

12 



www.manaraa.com

CHAPTER II 

CLONING OF THE BOVINE CORONA VIRUS RNA-DEPENDENT RNA 
POLYMERASE, HELICASE, EXONUCLEASE, ENDONUCLEASE AND 2'-0-
METHYLTRANSFERASE GENES, AND EXPRESSION AND PURIFICATION 

OF THE 2'-O-METHYLTRANSFERASE 

Introduction 

There are five genes in the BCo V genome that, on the basis of bioinformatic 

predictions, encode enzymes for RNA metabolism and they are all located within ORF 1 b 

(32). These are, in order, the RNA-dependent RNA polymerase (RdRP), the Helicase 

(Hel), the Exonuclease (ExoN), the Endonuclease (EndoN), and the 2 '-0-

Methyltransferase (MT). A required -1 ribosomal frameshift at the beginning of ORF 1 b 

enables the synthesis of the ORF 1 b proteins, all made in less abundance than the proteins 

of ORF la and in far less abundance than the (mostly) structural proteins made from 

downstream ORFs by individually-produced subgenomic messenger RNAs. 

The RdRP functions to replicate the genome and to synthesize subgenomic 

mRNAs. The functions of the helicase, exonuclease, and endonuclea�e are not yet 

known; however, the helicase may be responsible for unwinding secondary structure of 

the RNA in order for it to be more accessible to the RdRP. The MT, based on analogy, 

probably plays a role in 5' capping of the genome and sub genomic mRNAs, which helps 

stabilize the mRNAs and aids in binding of the mRNAs to the ribosome. As a 2 '-0-

methyltransferase, its probable role is in catalyzing the transfer of a methyl group from 

SAM to the first nucleotide 3' of the triphosphate bridge of the cap structure (8). 

Each of the five BCo V replicase genes were cloned into the TO PO-XL vector 

(Invitrogen) and subsequently into pGex (Amersham) and pET-28a (Novagen) 
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expression vectors to optimize chances for protein production. Additionally the MT was 

cloned into pET-SUMO (Invitrogen). The long-term objectives were to express and 

· purify each protein for enzyme function analyses, RNA binding analyses and ultimately 

crystallization and structural analyses (the last goal is in collaboration with the laboratory 

of Dr. Christopher Dealwis, Department of Biochemistry, University of Tennessee, 

Knoxville). In addition, plasmids were sent to Proteintech Group, Inc. (Chicago, IL) for 

the commercial production of rabbit polyclonal antiserum to each. Three separate 

expression vectors were used in this study in order to determine the optimal conditions 

for protein expression. The pGex vector expresses a fusion protein with glutathione-S­

transferase (GST), the pET-28a vector expresses a His-tagged fusion protein, and the 

pET-SUMO vector yields a non-fused protein after protease cleavage from the SUMO 

protein. 

Materials and Methods 

Virus and cells 

Human rectal tumor (HRT) cells were infected with the bovine coronavirus­

Mebus strain at an MOI of 1. HRT cells were grown as monolayers in Dulbecco's 

modified Eagle medium containing 10% fetal bovine serum (Hyclone). At 6 hours post 

infection, total RNA was harvested using TriZol (Invitrogen) and purified by phenol­

chloroform extraction. cDNA for the RdRP was made by using reverse transcriptase and 

the primer 3. l-268RL. For the Hel gene, primer 18302(+) was used, for the ExoN gene, 

primer 19973(+) was used, for the EndoN gene, primer 21095( +) was used, and for the 

MT gene, primer 21992(+) was used {Table II-1). 
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Table 11- 1 .  Oligonucleotides used in this study. 

Oligonucleotidea Sequence0 Binding 
Region (nt 
positiont 

3 . l -268RL(+) GCCAGTTGCCTTATATTTG 17996-
1 8014 

1 8302(+) GCTGTAACCATCTCTATCAGCAAAC 1 8278-
1 8302 

1 9973(+) TGTGTCTCCAACCTTGTCCA 19934-
CCACTACGCC 19973 

2 1095(+) AACACTGCCACCCAGAGCTAAC 2 1074-
2 1095 

2 1992(+) TGAGGGGTTGATAGTGATTTTATAATTG 21965-
21992 

BamRdRP(-) CGGGATCCTCAAAAGATACTAA 133 1 8-
TTTTTTTAAACGGGTTCGGGG 13351  

PstlRdRPStop(+) CGGCTGCAGTCATCATCACTGCATAAC 16067-
TGCACTTCTTAAATACATGTTCTTG 16 100 

BamHel5(-) CGGGATCCAGTGTTGGAGC 16 101 -
TTGCGTGGTCTGCTC 16 126 

EcoRIHelStop( +) CGGAATTCTCATCATCATTGAACT 17882-
CTCGTTTCAACGGCCTGTGGC 17909 

BamExo5(-) CGGGATCCTGTAGTACCAATTTATTTA 179 10-
AAGATTGTAGCAAGAG 17934 

EcoRIExoStop( +) CGGAATTCTCATCATCATTGTAGC 19472-
TTGGTGAACGTATTCCCAC 19449 

BamEndo5(-) CGGGATCCAGCTTGGAGA 19473-
ATGTTGTATATAA 19495 

EcoRIEndoStop( +) CGGAATTCTCATCATCATTGCAAA 20574-
CGAGGATAGAAAGTC 20594 

BamMT5(-) CGGGATCCGCTGCATCTGACTGGA 20595-
AGCCTGG 20617  

MfeMTStop( +) CGCAATTGTCATCAGATTACATTAAC 21465-
CATACTGTCACCAAC 2 1491 

aOligonucleotide binds to either plus-sense RNA as indicated by ( + ), or to minus-sense 
RNA as indicated by (-). 
1underlined bases indicate differences from genomic sequence. 
cNumbers correspond to Bovine Coronavirus-Mebus strain genome sequence. 
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Cloning into TOPO-XL plasmid vector 

The TOPO-XL vector (Invitrogen) was designed to facilitate the cloning of PCR 

products since it takes advantage of the extra terminal 3' deoxyadenosine residue added 

by the Taq polymerase during PCR. For cloning, cDNAs were used as templates in PCR 

reactions with Taqmaster polymerase (Eppendorf) along with the appropriate primers to 

amplify each gene {Table 11-1). The primers used were engineered to contain restriction 

enzyme sites at the 5' and 3' ends to aid in cloning, and stop codons at the 3' ends to aid 

in protein expression. For ExoN and EndoN clones, a BamH I site was engineered at the 

5' end and an EcoR I site at the 3' end. Additionally, three stop codons were engineered 

into each 3' primer. This was necessary since the genes are expressed naturally as 

internal segments of a polyprotein subsequently cleaved into individual functional 

proteins by ORF la-encoded proteases. Primers used to amplify the ExoN gene were 

BamExo5 and EcoRIExoStop. Primers used to amplify the EndoN gene were BamEndo5 

and EcoRIEndoStop. To clone the 2'-0-MT, the 5' primer contained a BamH I site and 

the 3' primer a stop codon and an Mfe I site, as the sequence of the gene already 

contained an EcoR I site. The primers used were BamMT5 and MfeMTStop. Digestion 

with Mfe I and EcoR I produce compatable sticky ends so the Mfe I-digested 2' -0-MT 

gene ligates readily into an EcoR I-digested vector. To clone the RdRP, PCR was 

performed using primers BamRdRP(-) and PstIRdRPStop, and for the Hel, primers 

BamHel5 (-) and EcoRIHelStop were used. An extra T was designed into the -1 

frameshift of the RdRP 5' primer to ensure a correct reading frame for the gene. Each 

PCR reaction product was purified by electrophoresis in a crystal violet-containing 

agarose gel (Invitrogen), and each product was ligated into the TOPO-XL vector using 
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the recommended procedure of the supplier (Invitrogen). The ligation mixtures were 

transformed into TOPl0 eliectrocompetent cells and cells were plated on 2XYT agar 

plates in the presence of kanamycin and grown overnight at 37°C. Colonies were 

screened by PCR using primers that bound within the cloned gene and positive colonies 

were used to make plasmid minipreparations with the Wizard Miniprep system 

(Promega). Sequences of cloned genes were determined by automated DNA sequencing 

in the Molecular Biology Resource Facility at the University of Tennessee. 

Cloning into expression vectors 

Three of the replicase enzymes, ExoN, EndoN, and MT, were cloned into 

expression vectors. The RdRp and Helicase genes in the TOPO-XL vector contained 

unwanted point mutations that were not easily repaired by repeated cloning so these were 

not used futher. For the ExoN and EndoN, 10µ1 of each respective TOPO-XL plasmid 

minipreparation was double-digested with BamH I and EcoR I at 37°C for two hours. 

The digested products were then resolved by electrophoresis on a 1 % agarose ethidium 

bromide gel and products isolated with the Geneclean III kit (Q·Biogene). Expression 

vectors, pGex and pET-28a, were also double-digested with BamH I and EcoR I and the 

products dephosphorylated with calf intestinal phosphatase (New England Biolabs), 

resolved by electrophoresis in a 1 % agarose ethidium bromide gel, and isolated with the 

Geneclean III kit (Q·Biogene). The purified linearized dephosphorylated vectors and 

purified digested gene products were ligated as required using the Quick Ligase kit (New 

England Biolabs). Ligated products were transformed into chemically competent DH5a 

cells (Invitrogen) and 100µ1 of each transformation reaction mixture was plated onto 
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2XYT agar plates containing ampicillin in the case of the pGex constructs and containing 

kanamycin in the case of the pET-28a constructs, and plates were incubated overnight at 

37
°
C. Colonies were screened by PCR and positive colonies were used to make plasmid 

minipreparations which were then sequenced to verify a wild-type sequence in the clone. 

The MT gene was similarly cloned into pGex and pET-28a vectors except that 

Mfe I replaced EcoR I for digestion of the MT-TOPO-XL plasmid minipreparation. 

Vectors were linearized with BamH I and EcoR I and ligation, transformation, plating, 

screening, and sequencing procedures were as described above. 

Additionally, the MT gene was cloned into pET-SUMO to produce a product with 

no extraneous fusion sequence following the SUMO protease cleavage step. For this, a 

5' primer that corresponds to the precise 5' end of the MT gene (i.e., without a restriction 

endonuclease site) was used. The 3' primer contained two sequential stop codons. The 

PCR product was isolated using Q·Biogene's Geneclean III kit and ligated into the pET­

SUMO vector following the protocol of the manufacturer (Invitrogen). The ligation 

mixture was transformed into One Shot Machl-Tl  chemically competent E. coli cells 

(Invitrogen) and 100µ1 of the transformation reaction mixture per plate was spread on 

2XYT agar plates containing kanamycin. Screening and sequencing procedures were 

carried out as described above. 

Bacterial expression and purification of cloned BCoV 2'-0-Methyltransferase 

MT was expressed from pGex-MT as a GST fusion protein, and from pET-28a­

MT as a his-tagged MT in order to increase the chances of getting efficient protein 

expression. For expression from pGex-MT, plasmid DNA was transformed into BL21 
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pLysS E. coli cells and grown in TB medium with ampicillin and chloramphenicol. 

Expression was induced with IPTG at 15°C overnight. Cells were lysed and proteins in 

the lysate bound to glutathione-sepharose resin (Amersham Biosciences) by incubation 

for two hours and end-over-end rotation. The column was washed sequentially with 

thrombin wash buffer (50mM Tris pH 8.0, 200mM NaCl, 5% glycerol), high salt buffer 

(50 mM Tris pH 8.0, 0.5 M NaCl), CHAPS buffer (50mM Tris pH 8.0, 200mM NaCl, 

8mM CHAPS), and then standard wash buffer to remove salt and CHAPS. Thrombin 

was added to the column and the mixture incubated at room temperature for 2 hours with 

occasional rotation. The flowthrough was collected and the resin washed with thrombin 

wash buffer to collect any remaining protein. The eluate was subjected to Superdex75 

column chromatography to increase protein purity. 

For expression from pET-28a-MT, plasmid DNA was transformed into BL21 

pLysS E. coli cells and grown in TB with chloramphenicol and kanamycin. Expression 

was induced with IPTG and grown for 15 hours at 15°C, and cells were pelleted and flash 

frozen in liquid nitrogen. Thawed cells were resuspended in lysis buffer (50mM Tris pH 

8.0, lOOmM NaCl, lmM EDTA, 10% glycerol, 5mM DTT, lmM PMSF, 1 ul Benzonase 

per 10g cells) and the lysate was clarified by centrifugation for one hour. Lysate was 

incubated with NiNTA resin (Qiagen) at 4°C for one hour on an orbital shaker. The 

lysate-resin mixture was poured into an EconoColumn and flowthrough collected. The 

column was washed with -50 column volumes of wash buffer and thrombin was added at 

a concentration of -5µL per liter of cells. The reaction mixture was incubated at room 

temperature for one hour with gentle agitation every few minutes, after which the 
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flowthrough plus two column volumes of wash were collected. The MT contained in the 

flowthrough was purified on a Superdex75 size exclusion column. 

Synthetic oligonucleotides used in this study 

Oligonucleotides used in this study are described in Table 11-1. All 

oligonucleotides were synthesized by Invitrogen Life Sciences (Carlsbad, CA). 

Results 

Cloning of the BCoV RNA-dependent RNA polymerase, Helicase, Exonuclease, 

Endonuclease, and 2'-0-Methyltransferase genes into the TOPO-XL vector 

The procedures used for cloning the five replicase genes into the TOPO-XL 

vector are described in Materials and Methods. Figure 11-1, A illustrates the PCR 

products of the ExoN, EndoN and MT genes resolved by agarose gel electrophoresis 

prior to cloning into the TOPO-XL vector. The sequences of the cloned RdRp and Hel 

genes showed them to have point mutations at various sites throughout. cDNA cloning 

of each was repeated several times but wt sequences were not found and thus cloning into 

expression vectors was not pursued at this time. The sequences of the cloned ExoN, 

EndoN and 2'-0-MT genes, however, were wt and were futher cloned into expression 

plasmid vectors of E. coli. 
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Figure 11-1. Cloning the BCoV replication enzymes. A. PCR products of the 
ExoN, EndoN, and MT genes from a cDNA template. The numbers beside the bands 
indicate the size of the PCR product in kilobase pairs including the stop codons and 
restriction enzyme sites that were designed into the primers. B. PCR screen of the 2' -O­
MT cloned into the pET-28a vector. Lane 1, + control ( l µl of the ligation mixture); Lanes 
1, 2, 4, 9, 11, and 12, colonies positive for the 2' -O-MT gene; Lanes 3, 5-8, 10, 13 and 
14, colonies with no insert. 
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Cloning of the BCoV Exonuclease, Endonuclease, and 2'-0-Methyltransferase genes 

into expression vectors 

Many colonies screening positive for the ExoN, EndoN and 2'-0-MT genes were 

found to contain wt gene sequences and some of these were used as sources for cloning 

into expression vectors. Mini-prepped plasmid DNA preparations were digested with 

restriction endonucleases corresponding to the engineered sites and inserts, purified by 

electrophoresis on a 1 % agarose ethidium bromide gel, were ligated into appropriately 

linearized and dephosphorylated expression vectors that were used to transform 

chemically competent DH5a cells. Resulting colonies were screened by PCR for inserts 

of the proper size as depicted in Figure 11-1, B. The MT was cloned into the pET-28a and 

pGex vectors forming pET-28a-MT and pGex-MT, respectively, and subsequently cloned 

into pET-SUMO forming pET-SUMO-MT. The ExoN and EndoN were cloned into 

pET-28a and pGex (data not shown). 

Expression and purification of the 2'-0-Methyltransferase 

For the purposes of measuring enzyme activity (Chapter III) and RNA binding 

(Chapter IV), the MT expressed from pGex-MT was used since the yield from this vector 

was the best. Figure 11-2 illustrates the MT protein as a fusion protein with GST and the 

intervening amino acids. Attempts to cleave off the MT from the GST protein with 3C­

protease (which cleaves immediately adjacent to the MT) to yield a native MT protein 

were unsuccessful. Therefore, cleavage with thrombin was used although this approach 

left an additional 11 N-terminal amino acids on the MT which could possibly interfere 

with either enzyme function or RNA binding. A colony screening to find positively 
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Thrombin 
Cleavage Site 

2 1 8 aa -SDLVXR_GSEVLFQGPGS-

MW: 26 kDa 

BCoV 
2'-0-MT 
299 aa 
MW: 35 kDa 

Figure 11-2. OST-Fusion construct showing the fusion protein produced when the 
MT is expressed from the pGex vector (pGex-MT). The arrow indicates the site at which 
the protease, thrombin, cleaves GST from the target protein. The amino acids to the right 
of the cleavage site in the diagram remain attached to the released MT. 
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transformed bacteria is illustrated in Figure II-3, A. After confirming expression of an 

induced fusion protein, cells were lysed and the fusion protein purified by affinity 

chromatography. MT was cleaved from the fusion protein and collected. Samples of the 

eluate were resolved by polyacrylamide gel electrophoresis to determine location of the 

protein (Figure II-3, B). A sample from the column resin eluted by SOS-PAGE sample 

treatment buffer was also resolved by polyacrylamide gel elctrophoresis to determine the 

degree of MT column retention. The presence of a 35 kDa band in the sample containing 

the eluate collected after the thrombin cleavage indicated that the MT was expressed in 

the cells and collected. However, presence of the 35 kDa band in the sample containing 

the resin indicated that not all of the protein was eluted in the initial step following 

thrombin cleavage. A -26 kDa faint band is also present in the sample of the MT eluate 

indicating that some GST impurities may be present. Expression of the MT from the 

pET-28a vector was performed (data not shown). In this case, however, expression 

levels were poor and the purity of the protein was low. 

Discussion 

The principal complication in cloning the five replicase genes from ORF 1 b of BCo V 

was the occurrence of random point mutations in the resulting clones. Random mutations 

were most prominently found in the constructs of the RdRP and Hel genes. Wild-type 

clones of the ExoN, EndoN, and MT genes in expression vectors were ultimately 

obtained. PCR mutagenesis reactions were performed on clones of the RdRP in attempts 

to repair single point mutations, but in these attempts alternate point mutations were 
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Figure 11-3. Expression of the BCoV MT from pGex-MT. A. Colony screen of 
cell colonies transformed with fusion protein-containing plasmid. The fusion protein has 
a molecular weight of-60kDa. Lane 3, indicated by the arrow, represents the colony with 
the best expression of the fusion protein. B. SOS-PAGE gel containing a sample of the 
eluate after the thrombin cleavage (lane 1) and material retained on the resin from the 
column (lane 2). Arrows indicate the location of the bands representing the MT and 
OST. The MT is -35kDa and OST is -26kDa. 
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found. Since the point mutations were random and varied in position it is believed they 

were introduced at a step subsequent to PCR, possibly during selection in the transformed 

cells. It is postulated that the RdRp and Hel enzymes contain sequences toxic in some 

fashion to the E. coli host and that non-toxic variants are selected by the host. The BCo V 

2'-O-MT gene was cloned into pGex and used to express the MT as a fusion protein with 

GST. The 2'-O-MT was cleaved from the GST protein and used in subsequent 

experiments which will be discussed in detail later. There were initial expression 

problems with the protein. (i) Whereas induction at 37
°
C for 3 hours showed poor 

expression, induction at 15 ° C for 20 hours showed much better expression ( data not 

shown). (ii) Whereas much 35kDa protein was retained on the resin after washing with 

normal elution buffer, post-cleavage elution with CHAPS buffer proved much better 

(data not shown). (iii) The presence of a 26kDa band in the eluate lane (Figure 11-3, B) 

indicated that some GST, which should remain on the column, had eluted with the MT. 

(iv) Initially we expected to use the 3C protease site just N-terminal to the start of the 

MT protein to cleave MT from the GST protein. However, cleavage efficiency of this 

construct on the column was extremely low. · It was then postulated that perhaps the GST 

and 2'-O-MT domains of the fusion protein were interacting a way that blocks access of 

the protease to its cleavage site, and thrombin was chosen to make the cleavage. 

Although this enzyme leaves extra amino acids at the N-terminus of MT, once optimized 

the protocol yielded milligram quantities of the protein used for further experimentation 

as described in Chapters III and IV. 
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CHAPTER III 

ASSAY FOR THE ENZYMATIC ACTIVITY OF BACTERIALLY­
EXPRESSED BOVINE CORONA VIRUS 2 '-O-METHYLTRANSFERASE 

Introduction 

The 2 '-O-Methyltransferase gene in the coronavirus genome has only recently 

been identified, and this was based on bioinformatic analyses (32). No functional or 

structural studies on a coronavirus MT have been published to date and it is toward this 

end that we have initiated studies on the bovine coronavirus MT. 

Many viruses that replicate in the cytoplasm encode their own MT, presumably to 

enable them to methylate their own translation-enhancing 5 '-terminal cap structures that 

would be otherwise out of reach of the cellular methyltransferases that function in the 

nucleus. The viral MTs also may have evolved other viral-specific functions required for 

virus replication. It is quite possible that a viral MT would methylate internal bases on 

the genome that would serve as some kind of heretofore uncharacterized signal for RNA 

function, or it could possibly methylate an amino acid to carry out another kind of 

signaling event. Viral MTs are thought to be attractive targets for chemotherapy since 

they have structural and biochemical features differing from cellular MTs. For this 

reason a detailed study of the BCo V MT activity to determine its function was 

undertaken. A description of our analyses follows. 
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Materials and Methods 

In vitro synthesis of three potential target RN As for the in vitro methylation assay 

For assays of the BCoV MT activity, it was presumed that the most likely targets 

for methylation would be an unmethylated G(5')ppp(5')G cap structure at the natural 5 '  

end of the genome (which by virtue of the common leader strategy of coronavirus 

transcription is also the 5' terminus of the sub genomic mRNAs ), and a partially 

methylated cap structure, m7G(5')ppp(5')G. However, a terminus with no cap at all was 

also possible, so a 5'-terminal target with no cap was also made and tested. To obtain 

these, a cloned BCo V defective interfering (DI) RNA of the BCo V under control of the 

T7 RNA polymerase promoter was used in an in vitro transcription reaction to make the 

capped and uncapped target RNA. Construction of the DI RNA-containing plasmid, 

pDrepl ,  has been previously described (6). pDrepl ,  constructed in the pGEM-3Zf(-) 

(Promega) backbone, was linearized at the Hpa I site at genomic nt 1 52 by overnight 

digestion at 37· C. The linearized plasmid was isolated using the DNA Clean and 

Concentrator-5 kit (Zymo Research) and used in an in vitro T7 RNA polymerase 

transcription reaction with RiboMax Large Scale RNA Production System (Promega). 

To produce a transcript with a totally unmethylated cap structure, G(5')ppp(5 ')G (New 

England Bio lab) was used in the reaction mixture, and for a partially methylated cap, 

Ribo 7 m cap analog (Promega) was used in the reaction mixture, and for a 5' structure 

with no cap at all, nothing was added. In this last case the 5' terminus was 

5'GAUUGUG...  In vitro RNA transcripts were phenol/chloroform extracted and 

purified by chromatography through a Bio-Spin 6 column (Bio-Rad) to remove 

unincorporated nucleotides, and ethanol precipitated. 
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In vitro assay for BCoV 2'-O-Methyltransferase enzyme activity 

For the in vitro assay for 2'-O-Methyltransferase enzyme activity, the method of 

Egloff et al (8) was used. Unmethylated capped, partially-methylated capped, and 

uncapped RNA transcripts were added to reaction mixtures at 19µM with 40mM Tris­

HCI, 1 00µM AdoMet with 1 0µCi Ado[ methyl-3H]Met 85Ci/mmole, 5 µg purified 2 '-0-

MT, 5% glycerol, and lmM DTT. 8µ1 aliquots of each sample and aliquots of a control 

reaction containing no RNA were removed at time points 0, 10, 20, 60, 120, 180, 240, 

300, and 350 minutes, mixed with 10µ1 of lO0µg/ml BSA and 5% glycerol, and the entire 

18µ1 was spotted onto a pre-wetted Whatman DEAE-81 paper disc. The paper discs were 

washed sequentially with four 1ml volumes of 200 mM ammonium bicarbonate, four 1ml 

volumes of water, and four 1ml volumes of ethanol, air dried, and tritium incorporation 

was determined by liquid scintillation counting. 

Results 

Comparative analysis of the BCoV 2'-0-Methyltransferase with other 

methyltransf erases 

By comparison with other MTs, the BCo V MT appears to be a member of the 

RrmJ family of MTs and shares a common structural fold with other viral MTs such as 

VP39 from vaccinia virus (25), a cytoplasmic DNA virus, and NS5MT ov from Dengue 

virus, a cytoplasmic positive-stranded RNA virus (8) (Table III-1 ). The BCo V MT is a 

protein of about 35 kDa and contains a predicted pocket for the binding of SAM, the 

methyl group donor in the methyl transfer reaction in the capping process. 
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Table 111-1. Characteristics of viral methyltransferases. Activity has not been 
established for each of these enzymes. Sequence analysis predicts the activity indicated. 
Putative SAM binding/active site indicates the catalytic region based on sequence and 

. 'd 
. 

'th 1 ·1 . th MT ammo ac1 compansons w1 ana ogous s1 es m o er enzymes. 
Protein Organism Reaction Methyl Putative Comments Ref. 
Name Donor SAM 

Binding/ 
Active 

Site 
A2 Reovirus Guanosine-7-N SAM Residues Both MT (26) 

MT; 2' -0-MT 825-888 activities 
observed in 
Reovirus 
cores 

NS5 Dengue 2' -0-MT SAM Cleft MT at N- (8) 
between � terminal 
strands 1 domain of 
and 4 RdRP 

155 kDa Bamboo GTP methyl- SAM N terminal GTP moiety (22) 
poly- Mosaic transferase; 442 amino methylated 
peptide Virus Guanylyl- acids before 

transferase transfer to 
mRNA 

VP39 Vaccinia 2 ' -0-MT SAM Aromatic VP39 binds (25) 
Virus residue- VP55 

lined cleft 
bisecting 
major face 
of protein 

RdRp Vesicular 2' -0-MT SAM Motifs I, MT activity ( 12) 
Stoma ti tis III, IV - found on 
Virus SAM RdRP 

binding; 
IV, VI, 
VIII, X-
catalytic 
site 

RdRP L Sendai Guanosine-7-N SAM C terminus N terminus (28) 
protein Virus MT; 2' -0-MT of L of protein 

protein has poly-
merase 
activity 
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There are three general steps in the capping process (8). In the first, an RNA 

triphosphatase converts the 5 '-triphosphate of the mRNA to a diphosphate. In the second 

step, a guanosine ·monophosphate (GMP) moiety is transferred from guanosine 

triphosphate (GTP) to the 5'-diphosphate RNA by a guanylyltransferase. In the third 

step, the reaction consists of methylating the transferred guanosine moiety by a guanine­

N7-methyltransferase by the use of SAM as a methyl donor. In a second methylation 

reaction, the first nucleotide 3' to the triphosphate bridge is methylated by a nucleoside-

2 '-0-methyltransferase. Adjacent nucleotides located 3' to the first methylated base may 

also be methylated and the order of the reactions may vary. The BCo V MT is thought to 

function in the last of these steps in which a methyl group is transferred to the first 

transcribed nucleotide of the mRNA. 

Various assays have been developed to measure viral methyltransferase activity. 

Experiments using the negative-strand RNA Sendai virus show that L protein, which has 

RNA-dependent RNA polymerase activity, catalyzes guanosine methylation of virus­

specific mRNA. Sequence analysis of the C-terminus of this protein also suggests a 

possible 2'-0-MT domain (28). In another example, VP39 from the double-stranded 

DNA vaccinia virus is the sole structurally characterized viral methyltransferase that is 

known to have 2 '-0-methyltransferase activity (2). We chose to use the 

methyltransferase assay conditions of Egloff et al (8) employed in a study of Dengue 

virus ( flavivirus) MT since the BCo V MT has bioinformatics-predicted similarities in 

structure and function (11). The Dengue virus MT, NS5, is part of a multifunctional 

protein wherein the MT domain is at the N-terminus and the RdRP domain is at the C­

terminus. In the Egloff assay, short potential acceptor RNA transcripts were either 
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capped, had a partially methylated cap (in which the transferred GMP is methylated), or 

were uncapped, and tritiated SAM was used as the methyl donor. In the Dengue virus 

MT assay, the capped and partially methylated capped transcripts were better acceptors 

for methylation by the 2' -0-Methyltransferase than the uncapped transcripts (8). This 

fits with the notion that the Dengue virus NS5 protein is a 2'-0-Methyltransferase, 

participating in a reaction which transfers a methyl group to the first transcribed 

nucleotide of the mRNA. 

To produce target RNA for methylation in our assay, pDrepl was linearized at the 

Hpa I site at nt 1 52 and used as a template for T7 RNA polymerase-driven in vitro 

transcription. pDrepl contains the entire 5'- and 3'-UTRs, a portion of ORF la encoding 

protein p28, and the entire N gene fused in-frame to make a single long open reading 

frame. RNA transcripts were 5 '-terminally capped, uncapped or contained an 

unmethylated cap. Tritium-labeled SAM served as the methyl donor and purified BCoV 

MT was the enzyme source. The abundance of tritium incorporation was the measure of 

MT activity. 

The BCoV 2'-0-Methyltransferase did not methylate RNA transcripts 

When tritium incorporation was measured for capped, uncapped, and 

unmethylated capped transcripts, no evidence of RNA methylation was found (Figure 111-

1 ). One major peak was observed for the unmethylated capped RNA at ,..., 15 minutes, but 

it was similar to a peak in the negative control at -210 minutes so the results were judged 

to be inconclusive. 
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Figure III-1. Tritium incorporation of RNA transcripts. This graph shows tritium 
incorporation of capped, uncapped, and unmethylated capped RNA transcripts plus a 
negative control over a 350 minute time period. Tritium incorporation was measured by 
liquid scintillation counting. Five readings were taken for each sample; the highest and 
lowest values were discarded and the remaining 3 values were averaged to generate the 
graphs. 
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Discussion 

Our results from the functional assay for BCoV 2'-O-MT activity indicate that 

the enzyme was not active under the conditions tested. One problem with the assay was 

the lack of a reliable level for the negative control. The negative control values should 

have been at background levels ( around 400-500 cpm) (8) but were consistently 500 cpm 

and higher. This indicates that the values for the sample RNA transcripts are not reliable 

apparently because some of the unincorporated 3H-SAM was not getting washed away. 

Also, one explanation for the apparent inactivity of the enzyme in this assay is that the 

BCoV 2'-O-MT may not function as an individual protein but as a polyprotein or as a 

membrane-bound protein complex with the other replication enzymes. Many viral 

proteins that function as enzymes from positive-strand RNA viruses carry out their 

enzymatic function as a protein precursor of the final digested product. For example, 

polio virus protein CD is a precursor to the final digested products, C ( a protease) and D 

(the RdRp ). The protease functions only as a precursor CD molecule. If this is the case 

with the BCo V MT, using purified recombinant protein alone would not support the 

function of the enzyme and, therefore, would not allow for measurable methylation of 

RNA transcripts. 
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CHAPTER IV 

BACTERIALLY-EXPRESSED BOVINE CORONAVIRUS 2'-0-
METHYLTRANSFERASE BINDS C/S-ACTING STEM-LOOP IV IN THE 

5' UNTRANSLATED REGION OF THE VIRAL GENOME 

Introduction 

In Chapter I are described six cis-acting elements for BCo V genome replication as 

determined through a study of the 2.2 kilobase BCoV DI RNA. These are summarized in 

Fig. I-3. Potentially these elements act as binding sites for the replication enzymes 

encoded in ORF 1 b or other viral proteins involved in RNA replication. Alternatively, 

they could provide an assembly focus for one enzyme that then binds others 

cooperatively in the formation of a replication complex, which in tum leads to replication 

of the genome and the antigenome. For example, it has been shown that the nucleocapsid 

(N) protein binds stem loop III of the 5' UTR (Raman, submitted). 

In this study we were interested in exploring potential interactions between the 

BCoV 2'-0-MT and cis-acting replication elements in the 5' UTR of the BCoV genome. 

For this, a series of electrophoretic mobility shift assays (EMSA) using probes 

representing three cis-acting elements in the 5' UTR were used. The absence of the MT 

binding to two other regions of the genome known to contain cis-acting elements, namely 

(i) the region of the genome encoding nsp 1, and (ii) the bulged stem-loop and adjacent 

pseudoknot in the 5 '-proximal region of the 3' UTR, served as negative controls for 

protein binding. The assays for the MT binding to the nsp 1 region and the bulged stem­

loop and adjacent pseudoknot were done collaboratively with Kortney Gustin and 

Agnieszka Dziduszko, respectively. It was observed that the BCoV MT binds stem-loop 
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IV. This is the first report of an RNA-protein interaction for a coronavirus-encoded 

methyltransferase. 

Materials and Methods 

Construction of plasmids 

Construction of plasmid p225 was accomplished by using primers p225Eco (5' -

GAATTCGATTGTGAGCGATTTGCGTGCGTGCATTC-3') and Hind225(+) (5'­

AAGCTTGTTGATCTTCGACATTGTGACCTAT-3') in a PCR reaction with pDrepl as 

a template to generate a PCR amplicon of the first 225 nucleotides of the BCo V genome. 

The p225Eco (5') primer was designed to have an EcoR I site, and the Hind225(+) (3') 

primer was designed to have a Hind III site. The PCR product was isolated from the gel 

with the use of Q·Biogene's GeneClean III kit. The isolated product was cloned into 

TOPO-XL and transformed into TOPlO electrocompetent cells (Invitrogen). Cells were 

plated onto plates containing 2XYT agar and kanamycin and grown overnight at 37° C. 

A PCR screen was done to determine the colonies positive for the plasmid, and 

sequencing was carried out at the UTK Molecular Biology Resource Facility to verify 

that the inserted sequence was wild-type. A minipreparation was made from a colony 

containing the wild-type plasmid using Promega's Wizard Miniprep kit. This miniprep 

was used in a double digestion reaction with EcoR I and Hind III. The digested insert 

was isolated from a 1 % agarose ethidium bromide gel by GeneClean and cloned into the 

vector pGEM-3Zf(-) (Promega). Construction of the plasmid pSLIV has been previously 

described (31 ). pSLIV is a plasmid containing the 30-nt stem-loop IV region and flanking 

sequence on both the 5' and 3' ends, contained in the vector pGEM-3Zf(-). 

36 



www.manaraa.com

Production of antibodies to the BCoV 2'-0-Methyltransferase 

pGex-MT was used by the Proteintech Group, Inc. (Chicago IL) for commercial 

production of rabbit polyclonal antibodies to BCoV 2'-O-MT. We have received both 

preimmune and immune serum preparations as well as 1 mg of affinity column-purified 

fusion protein ofBCoV 2'-O-MT from Proteintech. 

In vitro transcription 

The plasmid p225 was linearized with Hind III in an overnight reaction at 

37 °C. The plasmid pSLIV was linearized using Nco I in an overnight reaction at 37
° 

C. 

The linearized DNA was isolated using DNA Clean and Concentrator-5 from Zymo 

Research. The isolated DNA was added to a 50µ1 in vitro transcription reaction mixture 

to make a final concentration of 2.5µg per reaction, with 10µ1 5X transcription buffer, 

5µ1 lO0mM DTT, 2.5µ1 acetylated BSA (2mg/ml), l µl RNasin (40U/ul), 10µ1 rGTP 

(2.5mM), 10µ1 rATP (2.5mM), 10µ1 rCTP (2.5mM), 3µ1 rUTP (200µM), 12µ1 a 32P­

UTP, and lµl T7 polymerase. The reaction mixture was incubated at 37
° 

C for 1 hour, at 

which time 2.5 µl RQl RNase-free DNase was added, and the reaction incubated for an 

additional 30 minutes at 37
° 

C. 50µ1 sequencing stop dye was added to the reaction and 

the entire reaction mix was electrophoretically resolved on a denaturing 

urea/polyacrylamide gel at 200 volts constant voltage. The gel was exposed to film for 

10 minutes and the isolated probes were cut directly from the gel and eluted overnight on 

a rotary tumbler at 4
° 

C in 0.5M ammonium acetate and lmM EDTA. The eluted probes 

were ethanol precipitated and resuspended in 20µ1 of water. The radioactive content of 
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the probes was measured by Cerenkov counting and the probes diluted to 1-2 X 104 

cpm/ul. 

Protein binding assays 

For protein binding, essentially the conditions of Thomson (35) were used, but 

with the addition of yeast tRNA (16) and heparin (3). To 20 µl of a mixture of 5mM 

HEPES, 40mM KCl, 2mM MgCli, 4% glycerol, 2mM DTT, yeast tRNA (1 µg/µl), 

heparin (0.25 µg/µl), PMSF (lX), and RNasin inhibitor (20U/µl) was added 0.35 to 5 µg 

of purified MT protein and the reaction was incubated at 37
° 

C for 10 minutes. The yeast 

tRNA was added as a non-specific competitive inhibitor. To certain reactions, 5 to 15µg 

of cold competitor RNA was added, and the reactions were incubated for an additional 10 

minutes at 37
°
C. To this mixture was added l µl of radioactive probe and the reaction 

mixture was incubated at 3 7
° 

C for 10 minutes. 

Electrophoretic mobility shift assays 

For electrophoretic separation of RNA-protein complexes, 2 µ1 of 50% glycerol 

was added to the probe-protein mixture and electrophoresis was carried out on a native 

gel of 5% polyacrylamide-5% glycerol for the stem-loop IV construct and 4% 

polyacrylamide-5% glycerol for the p225 construct at 4 ° C with 0.5 x TBE running buffer 

(1 x TBE= 90 mM Tris HCl, 90 mM boric acid, 2 mM EDTA) for approximately 4 h at 

100 volts constant voltage. 
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Results 

The Bovine Coronavirus 2'-0-Methyltransferase binds stem-loop IV of the 5' 

untranslated region of the genome 

To investigate the binding properties of the MT, a series of gel shift assays were 

performed using the purified MT and radiolabeled probes encompassing the entire 5' 

UTR (p225) or only stem-loop IV (pSLIV) (Figure IV-1). In the first assay, the binding 

of the MT to a 225-nt long 32P-UTP labeled probe, a probe encompassing the first 225 nts 

of the BCoV genome which included the 210-nt 5' UTR and 15 adjacent nts, was done, 

and it was observed that this interaction produced a shift, even in the presence of yeast 

tRNA, a non-specific competitive inhibitor (Figure IV-2, A). 

To begin to address the question of which specific elements, if any, within the 5' 

UTR the MT might be binding, the probe encompassing only stem-loop IV and 

synthesized from pSLIV (Fig. IV-1 B) was used. This construct contains the 30-nt stem­

loop IV flanked by 36 nts upstream and 47 nts downstream. For this experiment, the 

pSLIV plasmid was linearized at the Nco I site at genomic nt 262, producing a 113-nt 

transcript upon in vitro transcription. The radiolabeled probe was incubated with MT and 

the reaction was resolved by polyacrylamide gel electrophoresis on a non-denaturing gel. 

The results shown in Fig. IV-2, D and E demonstrate that the MT binds stem-loop IV 

with enough affinity to cause a retardation of electrophoretic migration, a gel shift. 

A probe representing the nsp 1 coding region, made by Kortney Gustin (probe P 1 

in Fig. IV-2, B), and a probe representing the bulged stem-loop and adjacent pseudoknot 

in the 3' UTR, made by Agnieszka Dziduszko (probe PK in Fig. IV-2, C), did not bind 

the MT. This is illustrated by the absence of a gel shift with the MT in Figure IV-2, B 
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Figure IV-1. Structure of the probes used in the EMSAs. A. p225 probe made by 
T7 RNA polymerase after linearizing plasmid p225 at the Hind III site. B. pSLIV probe 
made by T7 RNA polymerase after linearizing plasmid pSLIV at the Nco I site. Numbers 
at the bottom of the figure indicate genomic nucleotide position. 
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Figure IV-2. Gel shift assays. A. Assay with probe p225. Lanes 1 and 6, free 
probe; lane 2, p225 with 5µg MT; lanes 3, 4, and 5, with 5, 10, and 15µg of cold 
competitor RNA, respectively; lanes 7, 8, 9, 10, 11, 12, with 0, 5, 10, 15, 20, and 25µg of 
yeast tRNA, respectively. B. Assay with probe P l ,  containing stem-loops V and VI. Lane 
1, free probe; lane 2, with 1: 1000 ratio of probe to protein. C. Assay with probe PK, 
containing the 5' proximal pseudoknot of the 3' UTR. Lane 1, free probe; lane 2, with 
1: 100 ratio of probe to protein. D. Competition assay with pSLIV probe. Lanes 1 and 4, 
free probe; lanes 2 and 3, with 5 and l Oµg of cold competitor RNA, respectively. Lanes 
5, 6, 7, and 8, with 2.5, 5, 10, and 20µg tRNA, respectively. E. Assay with pSLIV probe. 
Lane 1, free probe; Lanes 2, 3, 4, 5, with 0.35, 1.75, 3.5, and 5µg of MT, respectively. 
tRNA was used as a non-specific competitive inhibitor. Unless otherwise indicated, all 
lanes contain 5 µg MT and 20µg tRNA. 
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and C. P l  is a 134-nt probe containing stem-loops V and VI, and PK is a 147-nt probe 

containing the 5'-proximal bulged stem-loop and adjacent pseudoknot in the 3' UTR. 

Discussion 

The results of the electrophoretic mobility shift assays performed here indicate 

that the BCo V 2 '-O-Methyltransferase binds within the 5' UTR of the genome, and that 

at least one of the elements responsible for the binding within this region is stem-loop N. 

The binding of the MT to an element in the 5' UTR of the genome is not unexpected 

since it is predicted to function in the capping of the genome and subgenomic mRNAs, 

and these occur at the genome 5' terminus. Many questions need yet to be answered 

about the BCo V MT concerning its function. What does it do? Does it, in fact, act to 

methylate the cap structure, or might it methylate at other sites? For example, does it 

methylate bases internally within the genome that might serve as signals for other 

processes? It is still not clear what signals the RdRp to template switch at internal sites in 

order to place a leader onto sg mRNAs (20, 29). Conceivably, a methyl group might 

signal such a template switch. Does the MT per chance methylate a viral protein and 

hence regulate its function? 

In a separate set of experiments performed by Agnieszka Dziduszko with the MT 

described in this study, it was found that the MT binds a region near the 3' end of the 

genome. Preliminary data suggest it binds at or near the octameric sequence, 

GGAAGAGC, found universally in coroanvirus genomes at approximately 70 nts in from 

the 3' end of the genome. Mutations in the octameric sequence destroy the replicating 
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ability of the BCo V DI RNA, pDrep 1 (Hung-Yi Wu, unpublished), suggesting it has 

importance as a replication signal. Perhaps the binding of the MT to the 3' end of the 

genome is involved in genome cyclization, a postulated requirement for replication of 

many positive-stranded RNA viruses (1, 14, 15, 19, 38). 

Ultimately it will be important to determine where, within the BCo V genome, the 

MT does bind and, equally important, with what other viral proteins the MT interacts. It 

will also be important to determine for both its enzymatic and binding functions whether 

the MT acts as a final cleaved product, as synthesized here, or whether it acts as an 

uncleaved precursor, of which there are at least 4 possibilities: MT-EndoN, MT-EndoN­

ExoN, MT-EndoN-ExoN-Hel, and MT-EndoN-ExoN-Hel-RdRP. 
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CHAPTER V 

FUTURE DIRECTIONS 

Several questions raised by the results of this study and made approachable by the 

reagents produced are the following. (i) The other cis-acting elements within the 5' UTR 

(the sequence represented by stem-loops I and II and stem-loop III) need to be explored 

as possible binding sites for the MT. A stem-loop III construct will need to be 

constructed and used. (ii) It will be important to determine whether the binding of MT to 

stem-loop IV is dependent upon its higher-order structure, as is its cis-function for 

replication. (iii) It will be important to determine which, if any, of the 5 '-proximal cis­

acting replication elements are bound by the other enzymes encoded in ORF 1 b. (iv) It 

will be important to determine which viral proteins, if any, interact with the bound 

proteins in a secondary manner. How are they assembled to make the replication 

complexes? Gel shift assays using all the replication enzymes in varying combinations 

can be performed in order to determine the sequence of replication complex assembly. 

Additionally, the antibodies produced against these proteins can be used in pull-down 

assays to study assembly. (v) It will be important to determine where the MT might bind 

in other regions of the genome. My laboratory colleague Agnieszka Dziduszko has made 

the observation that the MT binds the octamer-containing bulged stem-loop in the 3' 

UTR. Is this playing a role in replication complex assembly or in genome cycilization? 

(vi) It will be important to determine the details of the MT-RNA interactions with such 

studies that might entail crystal structure analysis of the BCoV 2'-0-Methyltransferase. 

This would be extremely helpful in discovering the enzyme's mechanism of action, its 
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binding site at high resolution, and ultimately in designing chemotherapeutic drugs 

targeted to the MT. It's thought that the MT binds to the 5' UTR in order to aid in the 5' 

capping reaction; however, mutational analyses will need to be done to determine 

specificity. In addition, the other cis-acting elements will need to be tested in order to 

determine the details of the MT binding to the 5' UTR and catalyzing the capping 

reaction. The model presented in Figure V-1 is a possible scenario for the binding of the 

MT to stem-loop IV. However, more experiments (described above) will need to be 

performed in order to more fully elucidate the purpose of the MT-RNA interactions. 

Attempts to crystallize the MT in collaboration with the Christopher Dealwis laboratory 

at the University of Tennessee in Knoxville, are currently underway. (vii) Efforts to 

clone wild-type RdRP and Hel and produce antibodies to them should continue such that 

a systematic characterization of replication complex structure and function can be made. 

I II III IV 

Figure V-1. Model representing binding of the BCo V MT to cis-acting stem-loop 
IV. Stem-loop IV may be providing a binding target in order for the MT to perform the 
methyltransfer reaction. In vivo, the RNA structure of the mRNA may be folding into a 
tertiary configuration in which the stem-loop IV bound MT is in close proximity to the 5' 
terminus of the transcript. 
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